MATH 161: Calculus I
Course Description
Textbook Information
Textbook for MATH 161 and MATH 162: Dwyer and Grunwald, “Calculus: Resequenced for Students in STEM”, Preliminary Edition, Wiley.
Note: MATH 162A uses a different textbook. Namely, James Stewart. Calculus, Early Transcendentals (WebAssign eBook) 8th ed. Cengage Learning. Be sure you are reading the correct information.
Common Syllabus
Chapter 1: Functions
1.1 Functions and Their Graphs
1.2 Library of Functions
1.3 Implicit Functions and Conic Sections
1.4 Polar Functions
1.5 Parametric Functions
Chapter 2: Limits
2.1 Limits in Calculus
2.2 Limits: Numerical & Graphical Approaches
2.3 Calculating Limits Using Limit Laws
2.4 Limits at Infinity & Horizontal Asymptotes
2.5 Continuity & the Intermediate Value Theorem
2.6 Formal Definition of Limit
Chapter 3: The Derivative
3.1 Tangents, Velocities, Other Rates of Change
3.2 Derivatives
3.3 Rules for Differentiation
3.4 Product and Quotient Rules
3.5 Trigonometric Fn’s and Their Derivatives
3.6 Chain Rule
3.7 Tangents to Parametric and Polar Curves
3.8 Implicit Differentiation
3.9 Inverse Functions and Their Derivatives
3.10 Logarithmic Functions & Their Derivatives
Chapter 4: Applications of the Derivative
4.1 Maximum and Minimum Values
4.2 The Mean Value Theorem
4.3 Derivatives and Graphs
4.4 Optimization
4.5 Applications to Rates of Change
4.6 Indeterminate Limits and L’Hopital’s Rule
4.7 Polynomial Approximations
4.8 Tangent Line Approximations: Differentials and Newton’s Method
Chapter 5: The Integral
5.1 Antiderivatives and Indefinite Integrals
5.2 Area Under a Curve and Total Change
5.3 The Definite Integral
5.4 The Fundamental Theorem of Calculus
5.5 Integration by Substitution
Final Exam
Math 161 Common Final Study Materials
Calculators will not be permitted on the exam. We provide sample exams and study materials here from previous academic years.
We provide the following pdf files: